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Towards Policy Relevant Environmental Modeling: 
Contextual Validity And Pragmatic Models

Scott B. Miles

"Nothing in the world, no object or event, would be true or false if
there were not thinking creatures." (Davidson, 1990, p. 279)

"Ground Truth has given way to Ground Fuzziness." (Openshaw,
1996, p. 765)

Abstract
"What makes for a good model?" In various forms, this question is a question
that, undoubtedly, many people, businesses, and institutions ponder with regards
to their particular domain of modeling. One particular domain that is wrestling
with this question is the multidisciplinary field of environmental modeling.
Examples of environmental models range from models of contaminated ground
water flow to the economic impact of natural disasters, such as earthquakes.
One of the distinguishing claims of the field is the relevancy of environmental
modeling to policy and environment-related decision-making in general. A
pervasive view by both scientists and decision-makers is that a "good" model is
one that is an accurate predictor. Thus, determining whether a model is
"accurate" or "correct" is done by comparing model output to empirical
observations. The expected outcome of this process, usually referred to as
"validation" or "ground truthing," is a stamp on the model in question of "valid"
or "not valid" that serves to indicate whether or not the model will be reliable
before it is put into service in a decision-making context. In this paper, I begin
by elaborating on the prevailing view of model validation and why this view
must change. Drawing from concepts coming out of the studies of science and
technology, I go on to propose a contextual view of validity that can overcome
the problems associated with "ground truthing" models as an indicator of model
goodness. The problem of how we talk about and determine model validity has
much to do about how we perceive the utility of environmental models. In the
remainder of the paper, I argue that we should adopt ideas of pragmatism in
judging what makes for a good model and, in turn, developing good models.
From such a perspective of model goodness, good environmental models should
facilitate communication, convey  not bury or "eliminate"  uncertainties,
and, thus, afford the active building of consensus decisions, instead of promoting
passive or self-righteous decisions.   
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I t's A Model Wor ld
To [many] folk, a model is either a miniature version of some real-

world object, li ke an airplane fuselage, or an idealized version of a real-
world person ... Models like these are what we might label experimental
models because they constitutematerial representations of reality that have
either had some real-world features abstracted away (as with a model car
or ship in a bottle) or they have had imperfect real-world features, like
broken noses or bowed legs, replaced by idealized version (such as the
perfect proportions of a fashion model). In either case, the model then
serves to answer by direct experiment certain types of questions, such as
how air flows over an airplane wing under different atmospheric
conditions or how a particular types of clothes ... look when draped over a
perfect shape.  (Casti, 1997, p. 13) (Original emphasis)

In introducing us to models in his book Would-Be Worlds, John L. Casti ill ustrates
how pervasive the use of models are in society and, in fact, how we all use models in our
everyday lives. Casti uses this discussion to introduce the distinction between the
concrete, material models that we use in our everyday lives and the abstract, symbolic
models, li ke Newton's equation of motion (F = ma), which he implies are the domain of
only scientists and engineers. Ignoring the significanceof Casti's distinction for now, his
discussion helps us to seewhat models in general are: those things that humans interact
with in lieu of interacting with the real (or scarce) thing. We use models in placeof the
real thing because interacting with the real thing may be too costly, too dangerous, or may
be practically impossibledue to extreme temporal or spatial characteristics. Thus, we can
see that models represent things in a similar way as politi cal representatives serve as
delegates for a group of people: models "stand in for." This broad conception of what
models are subsumes other general definitions of models, such as models as analogies or
metaphors (see Coyne, 1995). Models, of course, can be used over and over again
(although in some cases that may mean rebuilding the model), whereas it may only be
possible to do it once (or some other finite number, including zero) with the real thing.
Knowing, in a general sense, what a model is and why we use models, a likely question
that comes to mind is: "What makes for a good model?"

Undoubtedly, many people, businesses, and institutions ponder various forms of this
question with regards to their particular domain of modeling (don't forget the examples of
models given by John L. Casti). One particular domain that is wrestling with this
question is the multidisciplinary field of environmental modeling. To avoid the
contention of the meaning of "environment," the definition given by the Oxford English
Dictionary will suff ice for characterizing what environmental models, in fact, model: the
sum-total of influences which modify and determine the development of li fe or character.
Examples of environmental models range from models of contaminated ground-water
flow (seeCorwin and Loague, 1996) to the economic impact of natural disasters, such as
earthquakes (see Earthquake Spectra, 1997, vol. 13, no. 4). One of the distinguishing
claims of the field is the relevancy of environmental modeling to policy andenvironment-
related decision-making in general. Because of the potential social and economic impacts
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(both positive and negative) of basing a decision on a environmental model, it is easy to
realize the import of the question "What makes for a good model?" for the field of
environmental modeling. Briefly recounting some of my own experiences that led me to
think on these issues will help to illustrate the importance and difficulty of answering this
question, in addition to illustrating the common view of how to determine whether a
model is a good. 

Recently, I was tasked with developing computer software for decision-support
related to regional earthquake-induced landslide hazard  the subject of my expertise.
Moderate to large earthquakes can trigger landslides, numbering in the thousands,
distributed over areas exceeding 100,000 km2 (Keefer, 1984). Earthquake-triggered
landslides have caused huge economic losses and casualties. In fact, in many
earthquakes, triggered landslides have accounted for most of the damage or casualties.
The most devastating example is likely that of an M=7.8 earthquake in China that
resulted in over 120,000 deaths caused by landslides, over half of the total fatalities
(Close and McCormick, 1922).  

The primary user considered in the requirements development of the software was a
utility company, who wanted a means of prioritizing their finances and efforts for
retrofitting and replacing gas pipeline. I encountered an obstacle in the very initial stages
of conceptualizing the software design: "What earthquake-induced landslide model
should the software be designed around?" Even though I was partial to the simulation
that I developed (Miles and Ho, 1999a), I decided to compare several models to try to
find an answer to my question. Each of the models were based on the method of Wilson
and Keefer (1983), most were simplified approaches  regression equations  derived
from applying the method to a generic set of inputs, while one was a direct
implementation of the algorithm. After applying each model to a real-world problem and
obtaining the respective results, I found that I could not arrive at a conclusion, in any
absolute sense, regarding which model was better. So, I proceeded to design the software
independently of a specific model to allow use of any (and many) models in the decision
process (see Miles et al., 1999). During the first review meeting for the project, similar
questions to the one I had asked myself were posed. "What good will having many
models do?" "Why not just use the best model?" In presenting my work at geology and
earthquake hazards conferences, I was met with even more direct questions. "But which
is the correct model?" "Why not just compare each model to data gathered from recent
earthquakes and determine the most accurate model?" A referee of a related paper (Miles
and Keefer, 2000) likened it to eating a fine meal (the model comparison) and not being
given dessert (the correct or accurate model).  

This episode illustrates the potential role of environmental modeling in decision-
making and, thus, the importance of basing decisions on a good model. This brief
narrative also shows the common expectation, of both scientists and decision-makers, for
determining what makes for a good model: ascertain the most "accurate" or "correct"
model by comparing it to empirical observation. The expected outcome of this process,
usually referred to as "validation" or "ground truthing," is a stamp on the model in
question of "valid" or "not valid" that serves to indicate whether or not the model will be
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reliable before it is put into service in a decision-making context. Within environmental
modeling, one can tracethis commonly held view to two origins. The first is a carry-over
of theory confirmation from physics and chemistry (i.e., "We expect A to exhibit behavior
X. Through controlled experiment, we observe X. Thus, our behavioral prediction is
confirmed.") (Sarewitz and Pielke, 1999). The second, of course, is the equivalent
practiceadvocated within cartography. Board (1967) noted that "[t]here are ... two major
stages to the cycle of map making. First, the real world is concentrated in model form;
secondly the model is tested against reality." (p. 672) The map then is given the stamp of
approval if there is an "adequate fit" between the map and reality. This common view,
however, must change, on the part of modelers, decision-makers, and stakeholders, as it is
impossible to determine the truth of a model or its reliabilit y prior to its use (Oreskes et
al., 1994).  

In the following section, I will elaborate on the prevaili ng view of model validation
and why this view must change (and why this view has changed in various intellectual
fields). Drawing from concepts coming out of the studies of science and technology, I
will propose a contextual view of validity that can overcome the problems associated
with "groundtruthing" models as an indicator of validity. The problem of how we talk
about and determine model validity has much to do, I will argue, about how we perceive
the overall utilit y of environmental models. Above, I made the assumption that
environmental modeling is relevant to policy and decision-making. While this may be
obvious to environmental modelers (including myself), the simple question of "why?" is
not only justifiable, but is important in understanding what makes for a good model.
Returning to the quote from Casti (1997), the reason why environmental models are
useful for decision-making is not so different, I think, from the reason why the model
fuselage is useful to aeronautical engineers or the fashion model to fashion designers.
Casti's label of "experimental models" is misapplied; the value of all models lies in the
facilit ation of experimentation. In the remainder of the paper, I will argue that pragmatic
perspective can help us to judge what makes for a goodmodel and, in turn, develop good
models.   From such a perspective of model goodness, good environmental models should
facilit ate communication, convey  not bury or "eliminate"  uncertainties, and, thus,
afford the active building of consensus decisions, instead of promoting passive or self-
righteous decisions.   In brief, it is not the environmental model that can be "valid" or "not
valid," rather it is the decision making context and the emergent actions or outcomes.

Truth In Modeling
"Every philosopher you ask will attack logical positivism, either on

details or on some general principle, but it remains the working philosophy
of modern science, medicine, and engineering." (Kosko, 1993, p. 8)  

Although, foundationalist thought  the belief that there is a unique ultimate basis
either in experience or rational thought (Kleindorfer et al., 1998)  has been out of
vogue within the philosophy of sciencesinceat least the 1970's thanks to Thomas Kuhn's
The Structure of Scientific Revolutions (1962), as observed by Bart Kosko and ill ustrated
by my anecdote, such perspectives persist outside of philosophy. Obviously, the
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epistemology that one adopts, whether knowingly or tacitly as part of one's discipline, has
a profoundaffect on one's view of model validity. The implications of foundationalist
philosophies of science, including Popper's criti cal rationalism (falsification) (Giere,
1999), on model validation is stated well by Barlas and Carpenter (1990):

If oneadopts a logical empiricist, foundationalist philosophy of model
validation, then validation is seen as a strictly formal, algorithmic,
reductionist, and "confrontational" process. Sincethe model is assumed to
be an objective and absolute representation [i.e., proposition] of the real
system, it can be either true or false. And given that the analyst uses the
proper validation algorithms, oncethe model confronts the empirical facts
[data], its truth (or falsehood) is automatically revealed. (p. 157)

Kleindorfer et al. (1998) likens this view of model validation to measles immunization;
oncethe validity of a model has been established it is immune to further attack. A good
example of such "immunity" among models is that of geologic or soil survey maps.
Unquestionably, maps fit our general view of models as those things that we interact with
in lieu of the actual thing. However, as argued by Board (1967), once "groundtruthed,"
maps are typically seen as immune from further evaluation:

It is unlikely that geological or soil surveys would beundertaken twice
for the same area ... The expense of repeating such surveys often means
that they are done but once. Maps of such surveys can therefore be
properly regarded as initial data with which to begin an investigation of
some problem within an areal context. They are as good as raw data
derived directly from observation of reality if such raw data cannot feasibly
be collected. (p. 714-715) (Author's emphasis)

Naomi Oreskes and others point out that veracity (truth) cannot be established for
any proposition except for one that refers to a closed system, such as mathematics,
symbolic logic, or computer code (Oreskes et al, 1994). They provide the following
simple example to demonstrate this statement.

[I]f I say, "If it rains tomorrow, I will stay home and revise this
paper." The next day it rains, but you find that I am not home. Your
verification has failed. You conclude that my original statement was
false.  But in fact, it was my intention to stay home and work on my paper.
The formulation was a true statement of my intent. Later, you find that I
left the house because my mother died, and you realized that my original
formulation was not false, but incomplete. It did not allow for the
possibilit y of extenuating circumstances. Your attempt at verification
failed because the system was not closed.  (p. 642) (Author's emphasis)

Systems such as mathematics and computer code are closed because the system's
elements (i.e., symbols) have precisely defined, fixed meanings, which are not contingent
uponempirical input. However, how many  if any  elements in an environmental
system have precisely defined, fixed meanings? Thus, the logical consistency of the
mathematics or computer code of environmental models can be verified, but the models
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never portray closed systems and so can not be verified.  

Ronald N. Giere argues that models, in fact, are not (linguistic) propositions, and,
thus, the concept of correspondence truth  exact conformance to an antecedently
determinate reality (Rorty, 1991)  has little meaning with regard to models and the
representation of environmental systems (Giere, 1999). Giere uses the familiar example
of maps to illustrate that models represent particular perspectives of the system as
determined by human interests, and these perspectives are necessarily partial.

Imagine, for example, four different maps [models!] of Manhattan
Island: a street map, a subway map, a neighborhood map, and a geological
map. Each ... represents [stands in for] the island of Manhattan from a
different perspective, appropriate, for example, for a taxi driver, a subway
rider, a social worker, and a geologist.  (Giere, 1999, p. 81)

Because these map-cum-models, are embedded within each respective practice (e.g., taxi
driving or geology), metaphysical questions of truth and correspondence (e.g., "How do
maps represent physical spaces?") will not lead to meaningful answers. Rather, Giere
suggests naturalistic questions of the sort: "How do we humans manage to use maps to
represent physical spaces?" This is not to suggest the abandonment of realism (i.e., the
world exists independently of the mental) in any way. In fact, Michael Devitt, an
outspoken proponent of realism, now admits "that no doctrine of truth is in any way
constitutive of Realism." (Devitt, 1997, p. 306)

The response of modelers to discussions of establishing the truth of a model as way
of validation is often one of the semantics of truth. Rykiel (1996) suggests that useful
definitions of truth for model validation are "(1) consistent with available data, (2) in
accord with current knowledge and beliefs, and (3) in conformance with design criteria."
(p. 237) Thus, Rykiel argues that model validation is the establishment of truth in the
above sense, under specified conditions. In other words, a modeler specifies some a
priori performance criteria (e.g., some statistical indication of fit), applies the model to a
case study exhibiting appropriate conditions, and compares the output with the best
available data (i.e., empirical observations). If the model meets the specified
performance criteria, the model is worthy of the stamp of "valid" and can be set on the
shelf at the model supermarket for, apparently, general consumption. Rykiel (1996)
stresses that modelers must observe truth-in-labeling "laws" and provide, with the model,
its purpose and the performance criteria and conditions for application that earned the
model a stamp of "valid" so that any potential consumer can make an informed choice.

Unfortunately, this view of model validity is not much better than validity as
correspondence truth. This view of validity presupposes that the phenomenon in question
(1) is observable and measurable, (2) permits the collection of ample data and (3) is
spatially and temporally invariant with respect to conditions not specified by the modeler
(Oreskes, 1998). Miles et al. (2000) demonstrate that these criteria for model validation
do not fully apply to many, if not most, environmental systems, and that it is not
uncommon for models to be applied (sometimes successfully) to conditions or uses
inconsistent with those intended. An example of such "misapplication" could be the
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common use of geology or similar maps(-cum-models) for supporting the estimation of
various environmental properties, such as soil strength or permeabilit y, which are then
assigned as attributes to the original map units  something that the map's developer(s)
likely never intended or foresaw. The diffusion of geographic information systems (GIS)
and the ease in which many environmental models can be implemented in GIS, has
certainly led to many models being employed for regional analysis when they were not
originally developed with GIS or large geographic scales in mind. Different assumptions
and decisions with respect to model parameterization and model implementation (e.g.,
with different GIS software or data models) effect model output (Miles et al., 2000).
Thus, whether or not output of a particular model matches empirical observations or
meets some specified criteria may be the result of a serendipitous combination of data
and decisions. Lastly, this view of validation may be viable if the models were only used
within a particular scientific community that understands the applications, limitations,
etc. of a given model (Oreskes, 1998) . But because environmental models are promoted
and expected to support policy and decision making, this isn't the case.  

An example of a classof models that is handicapped by the requirements of model
validation as suggested by Rykiel (1996) are models that yield probabili stic output 
inarguably, a popular classof models. The ontological status of probabilit y as applied to
environmental systems is questionable. (An extreme view is that of Kosko (1993,p. 50)
who writes, "The ultimate fraud is the scientific atheist who believes in probabilit y.")
Can probabilit y be observed or measured in environmental systems? Consider an
example from the August, 1999 Izmet, Turkey earthquake (M=7.4). Stein et al. (1997)
calculated a 12% probabilit y of a large earthquake (M > 6.7) occurring within a 30 year
period on the particular segment of the North Anatolian fault that experienced the recent
quake. Obviously, we can make the observation that the earthquake did occur. Does this
observation validate or invalidate the model? Can we determine the "actual" probabilit y?
Is it possible that an a priori performance criteria be specified for this model? For this
class of models, these questions simply don't make sense. Thus, any common view of
model validation doesn't help us to assess whether this model is, in fact, a "good" or
"bad" model. I submit that, to varying degrees, this is the case with all environmental
models.

(Actor-)Networked Models
Before I discuss ways to help us understand what makes for a good model, it is

helpful to reorient our concept of validity as it relates to environmental models. I agree
with Naomi Oreskes who stresses that we should never describe any model as valid
(Oreskes, 1998). To better understand what it is that we can describe as "valid" (or "not
valid") or "successful" (or "partially successful"), it is important to refocus upon the
decision-making process that a potential environmental model would be recruited (i.e.,
selected or developed) to play a part in, rather than just the model itself. Towards this
end, I suggest that it is useful to conceptualize a decision-making context as an actor
network. Actor Network Theory (ANT) developed out of the studies of science,
technology, and society (Latour, 1987; Law, 1992). Briefly, ANT provides an ever-
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evolving framework and vocabulary for describing and, arguably, explaining society's
successes and failures with(in) science and technology. For our purposes, it is not
necessary to learn the extensive jargon of ANT, nor do we need to take on any
metaphysical baggage associated with it (see Bloor, 1999). Understanding what is an
actor network will suff ice.

An actor network takes inventory of the contents of the context of an action
(Suchman et al., 1999). A simple, everyday example of an actor network is when we
drive down the freeway. Our actions to any given situation that may arise (e.g., debris on
the roadway) are affected by any number of factors, both human and non-human, such as
our experience and training in driving, the car we are driving, traff ic regulations, road
conditions, the cars around us, and the drivers in those cars. An actor network then
considers (links) all of the influential factors, referred to as actors (or actants to remind us
that it is not just humans that need to be considered), for the purposes of describing the
situation and our actions. Thus, within an actor network, human and non-human actors
are given equal explanatory status; at the outset, neither is treated as more important or
more influential. The value of this conceptualization is in the detail of description that
can be obtained and that an explanation does not make any a priori assumption that an
action is the result of (only) social or technologic factors, rather the action will be the
result of interactions between social and technical actors. This cursory definition of
"actor network" is more than enough to help us refocus our attention to the decision-
making context, rather than just the model, to understand what it is that can be evaluated
for labels, such as, "valid."

Just as the attribute "distance" applies to the relationship between, for example,
Seattle and Memphis, "valid" and "not valid" (and other common adjectives of validation)
only have contextual meaning. The adjectives only apply to the network of relationships
that emerge out of a particular decision-making context, that is, the actor network. As
with all actor networks, any decision-making context is comprised of human and non-
human actants. Human actants include scientists and engineers (the modelers and their
peers), decision-makers (at any number of levels), stakeholders (those people that will be
affected by the resulting decision or policy), and any funding agencies or the like. While
non-humans actants include, but are not exclusive to, the study area (which could be
unpacked further: e.g., soil type, climate, building codes, environmental impact laws,
etc.), data, model(s), software, hardware, etc. Without this network and the interactions
among the actors, the label of "valid" is not helpful, if not meaningless. Within the actor
network, the model plays an important role, but potentially no more important than the
human actants, such as stakeholders, and no lessimportant than non-human actants, such
as the study areaor data. A model may be well li ked and well used, and perhaps even
carries the label "valid" thanks to some research publication. However, if the model has
been recruited to inform policy the model is situated within an actor network. The model
may have served well some previous decision-making context, but its successwithin the
current context is not assured and may be hamstrung by, for instance, the practiceof local
scientists or out-of-date computing hardware. Thus, the context that must be considered
is not simply, as Rykiel (1996) argues, the physical conditions for which the model was
developed.  
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Hopefully, at this point it is easy to see why "valid" (etc.) is not an attribute of
environmental models (rather, all models). Instead, the adjective is contextual and
applies to the particular actor network (or the emergent actions and influences), in which
the model has been recruited. Doubtless, any decision-making context will be complex
and dynamic. It may not always be obvious who or what the actants are within the actor
network. Of course, actants may change with time or be substituted (e.g., higher
resolution data) or the interactions between actants may be modified (e.g., with
experience). Because of the complexity and dynamism of any such network, the label
"valid" or "adequate" is always fuzzy  a matter of degree and is apt to be short-li ved.
As a result, evaluation of the actor network is necessarily a never-ending affair, and,
hence, the idea of validation, as a formal process, loses much of its meaning.

What's The Pragmatic Application?
To recapitulate, we have a working idea of what models, in general, are; we are

confident that environmental models are relevant to policy and decision making; we
realize that the processof environmental-model validation is meaningless, if simply not
helpful; and, lastly, we have reoriented ourselves, with the help of ANT, so as to evaluate
the decision making context, rather than the isolated model. Not a short journey; but
we're better for making the trip. However, we haven't answered the question that we
started with: "What makes for a good model?"  

The popular notion, within environmental modeling, is that a goodmodel is one that
is a good predictor; the model provides a (set of) number(s) or categorizations that
accurately forecasts reality. No doubt, this view is what led Casti to distinguish the
abstract, symbolic models of scientists from that of the aeronautical engineer's model
fuselage or the fashion model. This view of model goodnes is pervasive. For instance,
Charles Groat, director of the U.S. Geological Survey advocated such a notion in his
FY2001 budget request before the Subcommittee on the Interior and Related Agencies
Committeeon Appropriations when he said, "Policy-makers at all levels, from the U.S.
Congress, to a business, to a local community, need accurate forecasts so that they can
envision the consequences of the many choices they facetoday." But having made our
journey, this path (i.e., good models are good predictors) is li kely to lead us astray.  

Hooke and Pielke (2000) reemphasizes this point in their assessment of short-term
weather prediction, while providing us a potential path that is compatible with our
contextual view of validity.

Prediction [products] are produced in the environment of a broader
prediction process, which includes the production of forecasts, but also
communication of forecast information and the incorporation of that
information in user decisions. The process might be thought of as a
symphony orchestra in which the different sections must work together
harmoniously to produce music. The analogue to music in the decision
processis effective decision making with respect to weather. Often some
mistakenly ascribe a linear relation to the threesub-processes, ... [predict
Æ communicate Æ use] These three sub-processes are instead better
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thought of as occurring in parallel, with significant feedbacks and
interrelations between them. (Hooke and Pielke, 2000, p. 68) (Original
emphasis)

Thus, "perfectly accurate" predictions that are miscommunicated or misused will
result in undesirable outcomes of the prediction process (or actions emerging from the
actor-network). Similarly, a prediction can be effectively communicated, but the
prediction product may not be of a form useful to actants within the decision context. As
a result,

when policy makers or other users ... ask the ... question "What is the
value of an improved [prediction product]?" and expect to get an aggregate
answer in dollars or lives, they ask the wrong question. They ought
instead to ask "What changes to theexisting [prediction] process... can we
expect to lead to better outcomes?" and expect the answer to be
contextual, multidimensional, and [perspectival]. (ibid, p. 69) (Author's
emphasis)

With the emphasis on the process, rather than the product, Hooke and Pielke (2000)
have adopted a decidedly contextual and pragmatic view of the goodnes of models.
However, in dealing with short-term weather forecasting, they understandably maintain
that model predictions, while not necessarily the sole foundation of model goodness, are
nonethelessimportant. We can conditionally accept this. But later, I will argue that other
properties of a model are equally important, or more so, in judging and guiding the
development of good models. Before we get to that, I want to take a cue from the
healthy, pragmatic perspective of Hooke and Pielke (2000) and suggest that we (i.e.,
scientists, decision makers, and stakeholders) adopt the pragmatist's way of thinking to
help us understand both how we should (and I would argue we actually do) go about
evaluating model goodness. As I briefly introduce the ideas of pragmatism, we will see
that our criti cism of "groundtruth" and our newly acquired contextual view of validity fit
quite nicely.  

The roots of pragmatism dateback to the turn of theprevious century with Charles S.
Peirce, Willi am James, and John Dewey. Pragmatism has experienced a resurgence in
the latter half of the twentieth century, thanks in part to Richard Rorty's Philosophy and
the Mirror of Nature (1979). Pragmatism's popularity is continuing to grow on into the
twenty-first century. Environmental pragmatism is a particularly good example of this
popularity. Environmental pragmatism marries a pragmatist perspective to the
explanation, solution and discussion of environmental ethics and related issues (seeLight
and Katz, 1996). So it is quite natural for the field of environmental modeling to adopt a
similarly pragmatic disposition. There are several hallmarks of pragmatism that I think
are quite valuable to understanding model goodnes and to environmental modeling, in
general, as it relates to policy and decision making.  

First and foremost, pragmatism is united against any type of foundationalist thought
(Giere, 1999), such as the notion of "groundtruth" or other common notions that results
in a model being stamped as "valid." From the perspectiveof pragmatism, all products of
human endeavor are both provisional and fallible.  To a pragmatist
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[k]nowledge ... is a name for the product of competent inquiries ...
The "settlement" of a particular situation by a particular inquiry is no
guarantee that that settled conclusion will always remain settled. The
attainment of settled beliefs is a progressive matter; there is no belief so
settled as not to be exposed to further inquiry. (Dewey, 1938) (Original
emphasis)

As part of his falli bili sm, JohnDewey argued that we may get things truer and truer,
but this is "truth" in the pragmatic sense. To a pragmatist, truth in the foundational sense
(e.g., correspondencetruth) is circular and,hence, unhelpful (James, 1907). For example,
to say that the model is "correct" or the model is "valid" does not explain the strengths
and weakness of recruiting a particular environmental model for a given context and
tends to prevent further inquiry of themodel, which ultimately would provideabetter and
better sense of model goodness. As the name implies, pragmatism is concerned with
human activities (e.g., a decision-making process) and the effects and outcomes of these
activities. Just as Hooke and Pielke (2000) focus our attention on the outcomes of the
prediction process, any mention of truth, by a pragmatist is referring to practical
consequences. "Truth is not something passively obtained, either by the contemplation of
absolutes or by the passive accumulation of data, but by activity shot through with the
theory [model] that guides it." (Rosenthal and Buchholz, 1996,p. 39) It follows that in
order for us to evaluate the goodnes of a model, we need to recruit it within our particular
decision-making context (actor network) and experiment with it.  

To help us understand this, it is useful for us to think of cars again, but this time in
the context of buying not driving. Few of us would purchase a car without taking it for a
test drive. The car may meet every criteria we set out (e.g., color, cargo capacity, engine
size, etc.), but it's not until we take it for a spin around the block and talk it over with
friends  participate in an activity and experiment with the car  that we can decide
whether or not the car is for us. Of course, the pragmatist knows that this choice to
purchase the car based on a test drive is not foolproof. But this should not and does not
prevent (most of) us from buying a car. In time, now that we own the car, we may
discover some annoying  even dangerous  features (e.g., a blind spot) about the car
that weren't addressed by our initial criteria or didn't "appear" to us during the test drive.
But with more time behind the wheel, we become practiced and the annoying feature is
not so much an obstacle, but something familiar. Of course, it is very possible that we
may not be able to practically overcome some annoying or dangerous features. But from
experience, which includes not only driving the car but our conversations with people
about our car and cars in general, we are better prepared to return to the car lot (or model
supermarket) and make a "truer" decision  one that will meet our practical
expectations.

At the risk of over-using a metaphor, the activity of buying a car helps to highlight
another hallmark of pragmatism: plurality. Except in rare cases of "love at first
experimentation," we would not buy a car without test driving multiple cars. From the
buyer's perspective, plurality of car models is typically seen as a good thing. Our
experiences from test driving one model helps us in experimenting with the next model;
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and sometimes, we realize that we can't do without more than one model in our garage.
This is true for environmental models as well . I would like to suggest that we have a
responsibilit y to expose ourselves to a plurality of environmental models so that each
model has a chance to "choose" us. After evaluating four earthquake-induced landslide
models (the same four introduced in the first section), Miles and Keefer (2000) stressthe
importance of keeping all four models in the "garage." Though each is a model of the
same thing (all derived from the same method in fact), one model may be more useful in
one context because of, say, available data, while a different model may be more usable
in another context, perhaps because of technical know-how of decision makers. Ideally,
several models can be used so as to encourage us to explore and explain differences in
model output  that is, foster experimentation.  

A Model Of Consensus
So, what makes for a good model? The environmental pragmatist Bryan Norton

provides the following answer:

[M]odels [should] improve our understanding in the specific sense
that they ill uminate environmental problems and allow us to focus on
those natural dynamics that are causally related to important social values.
... The ... models chosen in normative sciences must therefore pass a
double criterion. They must help us to understand nature, but they must
also encourage us to understand nature in a way that will help us to
formulate and measure environmental goals effectively and to propose and
implement policies to achieve these goals. (Norton, 1996, p. 125-126)

That is, a good model (or models!) is one that guides our particular decision-making
process to the desired outcomes (or nearly so) in a not entirely unexpected way, which
would, of course, constitute a "valid" (or partially so) actor network. 

Our motivating question has been answered, at least to some degree. The answer
may seem obvious to some, but of course it is the activity of answering (discussing) the
question that is most helpful. (I hope this discussion continues well beyond this paper.)
Even so, the environmental modelers among us are likely thinking: "Pragmatism guides
us to the obvious answer of what is a good model, but can it help me to develop good
models of environmental systems?"  My answer is that it can.

Richard Rorty describes an "objective" explanation as one that is open and
transparent (Rorty, 1991). Similarly, if we adopt the perspective of pragmatism, we
should strive to develop objective models  models that are lucid and easily
understandable by the human actors within the respective actor network (i.e., scientists,
decision-makers and stakeholders). This is not to say that some environmental modelers
do not already attempt to do this, but that we should put greater emphasis on research to
meeting this goal.  

Complex mathematical equations or numerical simulations can be diff icult for even
scientists to comprehend, let alone other actors in the decision-making context.
Following the suggestion of Richard Coyne for the design of information technology, the
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transparency or ease of understanding of environmental models can be increased by
treating models as metaphors (Coyne, 1995). This can be accomplished through effective
use of conceptual models, diagrams, analogies, and the like, which helps to describe the
features and workings of the otherwise largely unintelligible model through juxtaposition
with something familiar or more intelligible (e.g., landslides as blocks on an inclined
plane; electricity as water flowing through a pipe network; or gas molecules as billiard
balls). Such practice used to be common place, but seems to have waned with the
increasing complexity of environmental models and emphasis on prediction. This
practice needs to resume and expand for the sake of building transparent environmental
models.  

Alternatively, fuzzy systems provides an encouraging means for developing
pragmatically objective models of complex environmental systems. Because the essence
of fuzzy inference is computing with words, fuzzy systems can be used to model any
complex system (Kosko, 1992). For the same reason, the salient features of any fuzzy
inference model can be read and understood by modelers, policy makers, and
stakeholders, regardless of complexity.

Openness and transparency also applies to the decisions and choice with regards to
how we go about parameterizing and implementing environmental models. Paul N.
Edwards points out that the distinction between data and models is not always clear
because most data is collected or generated with the assistance of models and vice versa
(Edwards, 1999). In a similar way, models are not easily distinguished from the means in
which they are implemented because models must often be modified to fit the particular
means of implementation (e.g., using a raster data model versus a vector data model
within GIS) (Miles and Ho, 1999). Thus, a good model includes actively (rather than
passively) making explicit choices regarding parameterization and implementation, so
that all actors in the decision making context are aware of the effects of such choices, and
possible alternatives (Miles et al., 2000).

An objective decision is a decision arrived at by consensus (Rorty, 1991). Therefore,
good models should assist in the building of consensus among the human actors in a
particular decision-making process.  So how can models help to build consensus?  

Before I answer that question, I want to say that models should not be recruited as
tools of self-righteousness that prevent a consensus solution. With the prevailing
overemphasis on the value of model predictions and, of course, validity as "ground truth,"
I would argue that within any given decision-making context there is real potential for
this. Predictions are apt to be used to avoid making decisions, rather the "decision" is
"made" by the predictions of the environmental model (Pielke et al., 2000). For this
reason, while model-based predictions certainly have heuristic use, as in the example of
short-term weather-forecasting, complete reliance on model predictions (and stamping
models as "valid") can only be interpreted as an effort to avoid liability and
accountability.

Avoiding this pitfall, how can environmental models help to build consensus? I
would like to suggest that environmental models can greatly assist in consensus building
through persuasion, that is, encouraging experimentation and facilitating communication
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by and among scientists, decision makers, and stakeholders.    

Let's look again at the latter part of Casti's quote on experimental models:

... the model then serves to answer by direct experiment certain types
of questions, such as how air flows over an airplane wing under different
atmospheric conditions or how a particular types of clothes ... look when
draped over a perfect shape.  (Casti, 1997, p. 13)

This is precisely what any goodmodel should do: help us to answer (and pose) questions
 certainly not a new revelation!

Thus, as I argued in the beginning, all good models are experimental models. A
good experimental environmental model is one that is pragmatically objective and is
outfitted with suitably numerous and appropriate "knobs and levers." What I mean by
"knobs and levers" can be anything from variables in an equation that represent some
aspect of the particular environmental system (e.g., earthquake magnitude) to literal
buttons or sliders of a graphical user interface.  These "knobs and levers" must be relevant
to the needs (and abilit y) of the human actors in a decision-making context so as promote
their twisting and pulli ng  that is, encourage experimentation. We can see then,
because experimentation is a quality of a goodmodel, as well as, being an important part
of evaluating model goodness, development of new and better experimental
environmental-models will li kely lead to their use and (provisional) adoption.

I think that if we can make environmental models more engaging by improving their
ease of understanding (objectivity) and making them more and more suited to
experimentation, then environmental models will do a great deal in facilit ating
communication.  This is consistent with Richard Coyne's view of models as metaphors:

A metaphor need not be predictive. It is primarily a discursive tool to
keep a conversation alive, and its eff icacy resides in its adoption and use in
discourse ... (Coyne, 1995, pg. 245)

The example of hikers huddled around a map (model!) trying to decide the best
route up the mountain, provides a good, if overly-simple, example of what I mean.
Because the map, hopefully, has appropriate (ocular) "knobs and levers," the hikers, who
may have varying levels of expertise and experience, can experiment with different routes
up the mountain without actually hiking each proposed route  precisely why we need
environmental models. In experimenting with the easily understandable model,
communication among the hikers is facilit ated and a consensus of which route to take can
be built . Let's say for instancethat a route is identified as being "good" by several of the
hikers. However, because the map helps to convey that the route may involve some
amount of perceived danger, some of the hikers communicate their apprehension and so
another route is chosen through further interaction with the map.

Based on this example, I am sure there are some of us that want to insist that this is
exactly why "groundtruthing" must be the measure of model goodnes  the map must
correspond to reality (the mountain) so the hikers can accurately predict what they will
encounter. This insistenceof "groundtruth" leads to the call for reducing or eliminating
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uncertainty in environmental models. However, this is another foundationalist view that
needs to change because uncertainty is a fact of li fe. The typical notion of uncertainty
must be expanded beyond empirical uncertainty (e.g., the degree of fit of a regression
equation to data points) to include epistemological uncertainty (questions about our
knowledge or beliefs) (Edwards, 1999). Epistemological uncertainty cannot be
eliminated. Further, any attempt at reducing uncertainty (in the broader sense advocated
by Edwards, 1999) is itself associated with uncertainty because absolute certainty is an
unseen target (i.e., "How can webe conscious of what we arenot conscious of?"). This is
the essenceof Lotfi Zadeh's Principle of Incompatibilit y, which forms the foundation of
the science and philosophy of fuzzy logic (Kosko, 1993). Zadeh argues that the closer
you look at an environmental system the fuzzier the understanding of the system or
solution to the problem becomes. The following discussion comes out of a paper on
decision processes:

As the complexity of a system increases, our abilit y to make precise
and yet significant statements about its behavior diminishes until a
threshold is reached beyond which precision and significance (or
relevance) become almost mutually exclusive characteristics. It is in this
sense that precise analysis of the behavior of humanistic systems are not
likely to have much relevance to the real-world societal, politi cal,
economic, and other types of problems which involve humans either as
individuals or in groups. (Zadeh, 1973, p. 339)

While we cannot eliminate uncertainty from environmental models  Is it the model
that is uncertain or is it us?  and any reduction of uncertainty is itself associated with
uncertainty, I do think that environmental models can help to facilit ate the understanding
and communication of the uncertainties within a particular decision-making context.
Thus, rather than spending vast amounts of resources trying to eliminate the uncertainties
in models that we can't be fully aware of anyway, we should develop environmental
models so that they afford the characterizing and conveying of uncertainty to the best of
our abilit y.  While work is definitely being done towards this end, we need to consider the
point of facilit ating communication. Take the widespread use of probabilit y to describe
uncertainty and whether this helps to communicate uncertainty between scientists,
decision makers and stakeholders. The common understanding of probabilit y is that of
the chance of, for example, rolli ng an even number using a six-sided die (50%
probabilit y). In this case, the probabilit y value communicates the near-absolute certainty
of the chance of rolli ng an even number. Thus, probabilit y is commonly understood as
characterizing the uncertainty of an outcome (e.g., an even number or an earthquake),
rather than the uncertainty of our understanding of the system (e.g., a die or fault system)
or the uncertainty in the model output. Considering this, it can only be beneficial to
explore more (and more varied) means of facilit ating the disclosure of uncertainty
through the development of pragmatic environmental models.  

It Really Is A Model World
In writing this paper, I have two objectives beyond helping myself to think through
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the issues surrounding environmental-model validation. The first is to add my voice, as a
practicing environmental modeler, to the fray in hopes of affecting further change in the
attitudes of environmental modelers, and perhaps even more so, decision makers, and
stakeholders since they both have equal say if environmental modeling is not only to
influencepolicy, but influence it in a positive and anticipated way. That we cannot ever
establish, with absolute certainty, the (correspondence) truth and reliabilit y of an
environmental model and its output, is something that wemust accept. By accepting this,
our view of model validation (or "ground truthing") has to shift. Rather than focusing
uponthe environmental model, we need to take a pragmatic, contextual view of validity,
which is determined by the practical consequences emerging out of a particular decision-
making context (actor network), that broadens our consideration to human and non-
human actors. 

My secondobjective is to attempt to reconstruct the role of environmental models in
the faceof current philosophical perspectives and specific critiques of model validation.
From my unapologetically biased standpoint, I think environmental modeling can and
will continue to serve an important role in society. That role is decidedly pragmatic  to
help in the building of consensus (objective) decisions by encouraging experimentation
and facilit ating communication (especially of uncertainties). In no way is this a
diminishment of the role of models or the importance of environmental modeling
research. If anything, it is a promotion in both respects. The building of consensus, in
even the most simple decision-making context, is rarely a trivial thing. The role of
affording consensus will help to allay fears surrounding the uncertainties and falli bilit y of
prediction, and reduce the risk of putting absolute faith in any prediction. To serve this
role well won't be a small matter and will require as much or more research effort on the
part of environmental modelers, who must take the lead, decision makers, and
stakeholders to find novel ways of encouraging experimentation and facilit ating
communication. Continuing and building uponcurrent work towards characterizing and
conveying uncertainty is more important than ever if environmental models are to take on
this modified role.

Being a pragmatist, I have no expectations that this paper has provided "the" answer
to making environmental modeling (more) relevant to policy. Perhaps, it provides no
answers. Certainly however, it provokes a wealth of questions that provide for further,
active and fruitful discussion. I will consider this paper a successif it manages to involve
a wider cross-section of discussants, beyond just a handful of scientists and historians,
sociologists, and philosophers of science. As for the judges and lawyers, if we change
our expectations and our practices, they will have no choice but to follow.
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